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Plant genomic resources are genetic material of actual or potential value which can be utilized for the improvement 
of specific traits in Agri-horticultural crops. The generation of genomic resource in medicinal plants is important 
because they contain bioactive compounds or secondary metabolites important for human health. The demand 
for these compounds is increasing due to their application in herbal medicine. The recent “omics” techniques 
have made generation of genomic resources much efficient and cost effective. The improvement in sequencing 
technology from 2nd generation (NGS) to 3rd generation has reduced sequencing cost and thus brought many 
more crop genomes within range of analysis. The Next Generation Sequencing (NGS) based whole genome 
and transcriptome sequencing in medicinal and aromatic plant has played a vital role in generating genomic 
resources for effective conservation, crop improvement and better understanding about secondary metabolite 
biosynthesis in medicinal and aromatic plants. In present review, the progress of generating genomic resources 
such SSR resources, EST-SSR resources, transcription factors, transcriptome analysis, and whole genome sequence 
analysis in selected medicinal and aromatic plants has been updated, which may be further utilize in medicinal 
and aromatic plant improvement programs.
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Introduction
Medicinal and aromatic plants are very important 
because they are rich sources of secondary metabolites 
or bioactive compounds required for production of herbal 
medicines. The affordability, availability, compatibility, 
and acceptability of medicinal plants have made them 
an important element in the primary health care. Over 
70% of the population of developing countries relies 
upon medicinal plants for their treatment and primary 
care (Jeelani et al., 2018). Medicinal plants have been 
used for centuries to treat and prevent different diseases. 
Different secondary metabolites or bioactive compounds 
derived from the medicinal plants used for producing 
medicines due to diverse medicinal properties such 
as anti-inflammatory, immunomodulatory, anticancer, 
cardiovascular, antimalarial, and antimicrobial. 
 The present review focuses on four important 
medicinal and aromatic plants, Tinospora cardifolia 
(Giloe), Andrographis paniculata (Kalmegh), Vetiveria 
zizanioides (Vetiver grass), and Bunium persicum 
(Kala jeera). The Tinospora cordifolia is a deciduous 
shrub, belongs to Menispermaceae family (Spandana 
et al., 2013). In the Ayurveda, this plant is recorded 
as having bitter, pungent, and astringent tastes (Raghu 

et al., 2006). T. cordifolia has been reported to have 
various important medicinal properties viz., anti-
oxidant, anti-hyperglycaemic, anti-stress agent , anti-
carcinogenic, anti-spasmodic, anti-allergic, anti-leprotic, 
immunomodulator, anti-microbial (Jeyachandran et 
al., 2003; Kalikar et al., 2008; Khan et al., 2020; 
Singh et al., 2003; Asthana et al., 2001; Desai et 
al., 2002; Rajalakshmi et al., 2009; Ahmad et al., 
2015). The Andrographis paniculata, belongs to 
Acanthaceae family, and commonly known as chireta 
(Chandrasekaran et al., 2009). The plant contains a 
diterpenoid andrographolide which is bitter in taste, and 
responsible for the therapeutic interest of the plant. The 
several pharmacological activities of the plant has been 
reported such as cytotoxicity, antioxidant, antimicrobial, 
anti-inflammatory, immune-stimulant, antidiabetic, anti-
infective, anti-angiogenic, hepato-renal protective, and 
insecticidal activities (Okhuarobo et al., 2014). Vetiveria 
zizanioides L. Nash, which is a perennial grass, commonly 
referred as Khus, and belongs to the Poaceae family. 
The roots of the plant produce a fragrant and volatile 
oil content that is in high demand in the perfumery, 
and cosmetic industries (Sethi et al., 1968). Bunium 
persicum (Boiss.) Fedtsch., commonly known as Kala 
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jeera, is an important aromatic and medicinal plant 
from Apiaceae family, grows mainly in cold temperate 
regions of Central Asia and Northern India. Due to the 
high amount of aroma and essential oil present in the 
plant, Kala jeera is industrially important.
 The advancements in genomic technologies have 
made generation of genomic resources in medicinal and 
aromatic plants easy and also to improve the desired traits 
or secondary metabolites production. Genomic resources 
such as genomic SSR (Simple sequences Repeats), ESTs 
(Expressed sequence tags), transcription factors and 
small RNA etc has been generated using technologies 
such as transcriptome and whole genome sequencing 
in some medicinal plants (Singh et al., 2014; Singh et 
al., 2016; Sun et al., 2019; Kumar et al., 2020; Bansal 
et al., 2022). 

1. Approaches Used to Generate Genomic 
Resources 
Crop improvement goals are shifting toward a trait-
oriented approach as agriculture becomes more 
specialised and location-specific. To achieve these goals, 
it is crucial to both conserve and make use of the genetic 
diversity that is already present. Generating genomic 
resources can significantly improve the use of PGRs 
(plant genetic resources). Due to omics techniques, the 
development of genomic resources is now possible in less 
time and in cost effective manner. Few of the genomic 
approaches which are being used for the generation of 
genomic resources in medicinal and aromatic plants 
(Fig. 1) are discussed below:

Fig.1. Approaches commonly used for generation of genomic 
resources in medicinal and aromatic plants.

1.1 Microsatellite Enriched Library
In this approach, the microsatellite containing the DNA 
region of the genome is hybridized using microsatellite 
repeat specific probes, the genomic DNA is fragmented/
digested by either restriction digestion or sonication 
(Kandpal et al., 1994; Edwards et al., 1996; Fischer and 

Bachmann, 1998). This is relatively simple, robust, low 
cost, and reproducible in comparison to other methods. 
The method has been used to generate genomic SSRs in 
medicinal plants such as A. paniculata, and T. cordifolia 
(Kumar et al., 2020, Paliwal et al., 2016).

1.2 Transcriptome Sequencing 
RNA sequencing (RNA-seq) based on next-generation 
sequencing (NGS) platform, enable the simultaneous 
acquisition of sequences for both gene discovery and 
transcript identification relevant to biological processes. 
This approach is appropriate for those organisms 
for which genomic sequences information’s are not 
available (Ward et al., 2012). In recent years, de novo 
transcriptome has appeared as a powerful technique to 
identify genes involved in the biosynthesis of different 
secondary metabolites of medicinal plants (Huang et al., 
2012; Hyun et al., 2012; Singh et al., 2016). 

1.3 Whole Genome Sequencing 
The ability to sequence an organism’s entire genome 
with new NGS technology at a lower cost and in less 
time has become one of the key discoveries in the 
field of “omics,” even though “Sanger sequencing” has 
remained the standard for decoding genomes for several 
decades. Earlier, even sequencing a small genome would 
have required a multi-institutional collaborative effort 
and substantial funding. The advancement of NGS 
technologies has greatly increased the cost-effectiveness, 
speed, and efficiency of genome sequencing. The 
genome sequencing of some medicinal plants such as A. 
paniculata, Ocimum tenuiflorum, and Artemisia annua is 
available using NGS platform (Upadhyay et al., 2015; 
Shen et al., 2018; Sun et al., 2019).

1.4 Genome-wide Association Studies (GWAS) 
Genome-wide association studies (GWAS) have become 
a preferred method due to ongoing advancements in 
sequencing technologies and concerted community effort, 
especially when resequencing is carried out after the 
assembly of the reference genome or when a high-density 
genotyping array is made available (Michael and Jackson, 
2013). This approach has allowed to find the genomic 
variations linked with either molecular or biochemical 
phenotype, and traditional agronomic phenotypes. 
These associations could be used to accelerate the crop 
improvement programs. The genome wide study has 
been done in Matricaria recutita, a medicinal plant 
(Otto et al., 2017).
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1.5 Small RNA 
Small RNA, cis acting regulatory elements and intergenic 
regions which are part of intron region (non-genic region), 
also gaining the importance as genomic resources. Small 
RNAs play an important role in stress management in 
plants. The small RNAs has been discovered in medicinal 
plants such as Panax ginseng, Dendrobium huoshanense 
(Wu et al., 2012; Wang et al., 2022).

1.6 Single Nucleotide Polymorphism (SNP) 
Identification of allele variations in PGRs, which can be 
obtained by highly reliable DNA-based markers such 
as SNPs. SNP provides better potentials for studying 
PGRs management in several ways, including cultivar 
identification, genetic diversity assessment, genetic map 
construction, and marker assisted breeding (Ganal et al., 
2009). This is because the SNP is more readily available 
and stable during inheritance than other markers, such 
SSRs. The SNPs has been reported in medicinal plants 
such as M. recutita, and Crepidiastrum denticulatum 
(Otto et al., 2017; Dang et al., 2019). 

2. Genomic Resources Generated in Medicinal 
and Aromatic Plants

2.1 SSR Markers Generation through Enriched 
Genomic Library
SSRs are also known as microsatellites, which are 
short tandem repeats of nucleotides (1-10) and 
distributed throughout the genome. Due to codominant 
in nature, multi allelic, high reproducibility and cross 
transferability, the SSR markers are one of the choicest 
marker system for genotyping, population structure 
assessment, varietal identification, association mapping 
etc. (Kalia et al., 2011). Paliwal et al; 2016, generated 
microsatellite markers in T. cordifolida with the help of 
SSR enriched genomic libraries. The genomic libraries 
of (CT)14, (GT)12, (AC)10, and (AAC)8 repeats were 
developed, which were used to generate 90 microsatellite 
sequences. These g- SSR markers were validated and 
used for genetic diversity studies in 26 accessions of T. 
cordifolia and one each accession of T. sinensis and T. 
rumphii. The markers were found efficient for genetic 
diversity analysis as well as cross transferability of more 
than 80% SSR markers was also reported in related 
species of Tinospora (T. rumphii, and T. sinensis). 
Kumar et al., 2020, developed SSR markers using 
SSR genomic libraries enrichment in A. paniculata 
and validated through genetic diversity analysis. Four 

types of SSR enriched genomic libraries such as (CT)14, 
(AG)15, (GT)12, and (AAC)8 were used to generate 
67 genomic SSR markers. The 41 SSR markers were 
found polymorphic and efficient for genetic diversity 
analysis. The developed genomic SSR markers could 
be an important genomic resource for crop improvement 
programs of A. paniculata. Singh et al., 2014, reported 
genetic diversity and cross genera SSR transferability in 
Vetiveria zizanioides L. Nash by transferring rice hyper 
variable SSRs markers (HvSSR), out of 120 HvSSR 
markers studied, 36 showed cross genera transferability. 
The across genera transferred SSR markers of rice could 
be an important genomic resource vetiver germplasm 
improvement programme. 

2.2 EST-SSR and Transcription Factor Generation 
through Transcriptome

In the last ten years, RNA-seq has emerged as the 
preferred platform for transcriptome analysis and has 
been widely used to obtain mass sequence data for 
gene discovery, generation of molecular markers, 
and transcriptional analysis in a variety of plants. 
Researchers can analyse functional genes and regulatory 
mechanisms of medicinal and aromatic plants with the 
aid of transcriptomics research, which can also help 
them refine breeding selection and cultivation methods. 
The transcriptome data can be used to monitor the 
transcriptional activity of any plant species without 
reference genome. Singh et al., 2016, generated 
transcriptome sequence of T. cordifolia using 454 
GS-FLX pyrosequencing. Identified 4,538 transcripts 
showing significant similarity with corresponding 
orthologs were categorized into 58 different transcription 
factor families. The highest member (457) of basic 
loop helix (bHLH) transcription family was identified, 
followed by MYB (295) and NAC (280). Among the 
assembled transcripts, 5,412 SSR loci consisting of 
mono- to hexa- nucleotide repeats and also complex 
motif were identified. A total of 96 EST-SSR were 
validated and used for genetic diversity analysis among 
24 accessions of T. cordifolia, which indicated these 
markers were polymorphic and highly reproducible and 
can be utilized as important genomic resource. 

2.3 Genome Wide SSR Marker Generation through 
Whole Genome Sequencing

Whole genome sequencing and its de novo assembly 
could be another approach for the generation of genomic 
resources in non-model plants. In case of Bunium 
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persicum whole genome sequencing was done using 
Illumina HiSeq X Ten sequencer. Since no reference 
genome was available therefore de novo assembly was 
done. A total of 1,77,029 perfect and 5915 compound 
SSR motifs were identified in 2,12,585 assembled 
sequences (Bansal et al., 2022). Total 88 SSR primers 
were used for their validation and genetic diversity 
analysis among 25 accessions of B. persicum. The 
genome wide SSRs markers developed in B. persicum 

will open new avenues for characterizing genotypes and 
to develop future conservation strategies for B. persicum. 

 The above three approaches have been used by 
different researchers for the generation of genomic 
resources in different medicinal and aromatic plants. A 
comprehensive information about availability of genomic 
resources in different medicinal and aromatic plants has 
been summarized in Table1. 

Table 1:  The available genomic resources in medicinal and aromatic plants

S. No. Medicinal plant species Available genomic resources References
1 Aconitum carmichaelii Transcriptome (Rai et al., 2017b)
2 Andrographis paniculata Genome, Transcriptome, g-SSRs (67), EST-SSR 

(32,341), NAC Transcription factors (2), WRKY 
Transcription Factor (58)

(Cherukupalli et al., 2016; Wang et al., 2017; Kumar et al., 
2020; Zhang et al., 2021; Kumar et al., 2022) 

3 Artemisia annua Genome, ESR-SSR (2110), NAC Transcription 
factor (28)

(Wang et al. 2012; Shen et al., 2018; Kumar et al., 2021)

4 Bacopa monnieri Transcriptome, MYB35 (Jeena et al., 2017, 2021)
5 Bunium persicum  g-SSRs (177029) (Bansal et al., 2022)
6 Bupleurum chinense g-SSRs (19), EST-SSRs (44) (Sui et al., 2009)
7 Camptotheca acuminata Genome, transcriptome (Sun et al., 2011; Zhao et al. 2017)
8 Cannabis sativa Genome, transcriptome (Bakel et al., 2011)
9 Catharanthus roseus Genome, EST-SSRs (2034), genomic-SSR (314) (Mishra et al., 2011; Shokeen et al., 2011; Kellner et al., 

2015)
10 Chrysanthemum morifolium  EST-SSR (218) (Feng et al., 2016)
11 Docynia delavayi EST-SSR (18) (Peng et al. 2021)
12 Glycyrrhiza uralensis Genome, Transcriptome, EST-SSR (7032), (Liu et al., 2015; Mochida et al., 2016) 
13 Hippophae rhamnoides  EST-SSR (30) (Jain et al., 2010)
14 Lancea tibetica g-SSR (4441) (Tian et al., 2016)
15 Lonicera japonica Transcriptome (Rai et al., 2017a)
16 Nicotiana tabacum Genome, g-SSRs (1365), EST-SSRs (3521) NAC 

Transcription factor (280)
(Sierro et al. 2014; Tong et al., 2012; Kumar et al., 2021)

17 Ocimum tenuiflorum Genome, ESR-SSR (471) NAC Transcription 
factors (110)

(Upadhyay et al., 2015; Kumar et al., 2021)

18 Ophiorrhiza pumila Transcriptome, WRKY transcription factor (46) (Yamazaki et al., 2013; Wang et al., 2022a) 

19 Paeonia suffruticosa EST-SSR (4,373) (Wu et al., 2014)
20 Panax ginseng Genome, Transcriptome (Li et al., 2013; Xu et al., 2017)
21 Panax japonicus Transcriptome (Rai et al., 2016b)
22 Papaver somniferum Genome, Transcriptome, EST-SSR (14957) (Desgagné-Penix et al., 2010; Winzer et al., 2012; Şelale et 

al., 2013; Pei et al., 2021)
23 Perilla frutescens Transcriptome (Fukushima et al., 2015)
24 Physalis alkekengi Transcriptome (Fukushima et al., 2016)
25 Pueraria lobata Transcriptome, g-SSR (20) (Han et al., 2015; Zhou et al., 2019)
26 Sarcandra glabra EST-SSR (25,620), SNP (726,476) (Xu et al., 2021)
27 Swertia japonica Transcriptome (Rai et al., 2016a)
28 Tinospora cordifolia genomic-SSR (90), EST-SSR (25406) (Paliwal et al., 2016; Singh et al., 2016)
29 Trachyspermum ammi Transcriptome, NAC Transcription factor (68) (Howyzeh et al., 2018; Kumar et al., 2021)
30 Trifolium pratense Genome, NAC Transcription factor (97) (Vega et al. 2015; Chao et al., 2018; Kumar et al., 2021)
31 Veratrilla baillonii Transcriptome, EST-SSR (40885) (Wang et al., 2015)
32 Vetiveria zizanioides Transcriptome  (Chakrabarty et al., 2015)
33 Withania somnifera Transcriptome, EST-SSR (729), AP2/ERF (187)  (Gupta et al., 2013; Tripathi et al., 2020)
34 Zingiber officinale EST-SSR (16,790) (Vidya et al., 2021)
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Fig. 2. Database of microsatellite markers generated from transcriptome Tinospora cordifolia (Tino TranscriptDB) and 
Andrographis paniculata (Andro TranscriptDB)

2.4 Medicinal Plants Database
Database is a collection of data that is organized for 
simple access, management, and updating. The genomic 
resource generated from transcriptome studies were 
uploaded for public use in the form of user-friendly 
database. Two medicinal plant genomic resource 
databases developed by ICAR-National Bureau of 

Plant Genetic Resources (NBPGR), New Delhi, one 
is TinoTranscriptDB and another is ApTransDB. 
TinoTranscriptDB (http://www.nbpgr.ernet.in:8080/
Tinospora/) and ApTransDB (http://www.nbpgr.
ernet.in:8080/Andrographis/About.aspx), are publicly 
available database of transcripts and SSRs of T. cordifolia, 
and A. paniculata, respectively (Fig. 2). Both the database 
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provides the information of SSR, (EST Expressed 
sequence tags)-SSR, transcription factor categories, 
and GO categories, and gene sequences. The genomic 
information provided can be further utilized to discover 
the candidate genes related to secondary metabolite 
biosynthesis through comparative genomics. The different 
public databases available in case of medicinal and 
aromatic plants are given in Table 2.

3. Conclusions
Genomic resources such as molecular markers, genes, 
and transcription factors related to the biosynthesis 
of bioactive compounds or secondary metabolites are 
important tools that can be utilized for increasing the 
production of these compounds. Since very limited 
genomic resources has been generated in case of 
medicinal plants, therefore there is need to develop 
more resources so that, obstacles for crop improvement 
programs of medicinal and aromatic plants can be 
addressed effectively. 
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